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Abstract 
 

Various rating and ranking systems have been prevalent in the world. In particular, the 

Codeforces rating system is intriguing, due to its unique contest mechanism and meticulously 

designed rating method. Codeforces is a website that hosts competitive programming contests, 

and this paper researches its rating system to make competitors clearer about it. The paper 

proposes a multi-competitor Elo rating method, based on the classical Elo method, to compute 

the predicted rating change of competitors after the contest. A “predictability index”, 𝐴𝑀𝑆𝐸, is 

defined to evaluate the accuracy of my prediction, and the value is 0.10639346 when 𝐾 = 1.44 

and 𝐾2 = 0.805. Assigning different 𝐾 values corresponding to different sections of contestants 

would further improve my simulation, which is a rich area for future work. 

 

 

 

1. Introduction  
 

Multi-competitor ranking is a present and on-going research area, especially given the advent of 

massive online gaming. “It depends on a skill rating system to infer accurate player skills from 

historical data” (Minka et al., 2020) in order to match players with opponents similar to their 

levels. Microsoft Research proposed the TrueSkill method and TrueSkill 2, with TrueSkill 2 

being their multi-competitor ranking method.  

 

A related paper written by Minka et al. (2020), “TrueSkill 2: An improved Bayesian skill rating 

system,” presents “TrueSkill2, a collection of model changes to TrueSkill as well as a new 

system for estimating model parameters”. The improved method gives significantly more 

accurate skill ratings than the original TrueSkill method, reflected by a variety of indicators to a 

game studio. 

 

Minka’s paper begins by illustrating a set of top priority of qualities needed by a modern game 

studio, then continues with what TrueSkill model has satisfied and what has not. Following this 

is the detail of the classic TrueSkill model. TrueSkill 2 is modified in certain ways to meet the 

requirement omitted by the classic TrueSkill model. The various requirements, or in other words, 

assumptions of the model, is vital for the theory of the paper to hold. Rigorous explanations on 

the validity of assumptions are vital as well.  

 

For the parameter estimation section, proper values were assigned to different parameters. One 

purpose is to reduce ambiguity, such as fixing β to 1. The other purposes are explained in the 

paper to fit the design of the game itself. For different game applications, the parameters tend to 

differ, so game developers should adjust the model to suit better to their games.  

 



The paper also includes the classification of confounding variables. The essential and basic part 

of the model is developed by disregarding those confounding variables. Then the paper classifies 

those variables to four categories, with elaboration in section 6, 7, 8 and 9. The algorithm is 

tested and shortcomings are found in each category, then the model is improved to yield a more 

accurate estimation. Some features not added are explained in section 10, and the main reason of 

not adding them is that they are overlapping with the previous four categories. 

 

There is also a version of Elo for multi-competitor games. “The Elo system was originally 

invented as an improved chess-rating system over the previously used Harkness system” (Elo 

rating system, 2021). One such version is the Elo-MMR rating system, elaborated by “An Elo-

like System for Massive Multiplayer Competitions” (Ebtekar & Liu, 2021). The base case is the 

Bayesian model for multiple competitors, similar to Minka et al.’s paper but more complicated 

with more variables. Then the author proposes the two-phase algorithm for skill estimation in 

detail, and the elaboration has many advanced formulas and mathematical terms. After that is the 

discussion on skill evolution over time, and a term “pseudodiffusion” is put forward. A set of 

pseudocode helps illustrate the idea. Then the paper evaluates the theoretical effectiveness of the 

algorithm, with calculations of time complexity and optimizations. Finally, data from past 

contests of different competitive programming sites such as Codeforces and TopCoder is put into 

the algorithm to determine the effectiveness of prediction. In the appendix part, there is also 

proof of theorems used in the paper. 

 

Another version is a multi-competitor Elo method applied on Formula One matches. The article 

“Who’s The Best Formula One Driver Of All Time?” (Moore, 2018), describes this rating 

method adjusted to rate the competitions with multiple competitors.  

 

Similar to the Elo rating method, competitors are assigned an initial rating of 1300. The largest 

difference is that “each session or race is treated as if it were a round-robin 1-on-1 tournament. A 

driver who finishes second out of 15 cars is viewed as having gone 13-1 in this tournament, 

losing to the first-place finisher and defeating the rest” (Moore, 2018). In this version, only 

competitors’ ranking will determine its rating change, but the actual scores are not taken into 

account. My intended research topic included the effect of actual scores on rating change, so I 

would only learn the idea of this method. This paper will change the simple win-lose score into a 

weighted version of competitor’s points. 

 

The article also points out that artificial adjustment on rating changes is necessary in order to 

prevent rating inflation or deflation. Without the adjustment, the initial uniform standard for 

determining competitor’s ability would fluctuate over time, certainly unfair for different 

competitors that stay active in different time. 

 

Other variations also exist such as the Massey method. Greene et al. (2014) used several ranking 

methods to evaluate the strength of US Men’s Ice Hockey team. It concludes with the global 

ranking of the team, the chance to win medal in the 2014 Olympics, and the improvement of the 

team.  

 

For head-to-head sports, Greene et al.’s paper uses the Massey method, the Elo method, and the 

TrueSkill method to analyze the US Men’s Ice Hockey team’s placement over time. After this is 



the comparison of the methods. In the comparison section, the Elo rating method is classified as 

straight Elo (holding k value constant), simple weighted and heavy weighted. I may adapt this 

classification process in my paper as well. Straight Elo rating method predicts better result than 

the other two variations of the Elo method. Then the passage evaluates the predictions of the 

three rating methods quantitively over time.  

 

The major content of this paper is head-to-head sports. Rating systems on multi-competitor 

sports are mentioned, but unfortunately, they cannot be analyzed in the same way as head-to-

head sports. 

 

In this paper, I will design and analyze the rating system for Codeforces, the most famous 

website that hosts international competitive programming competitions. Codeforces, 

https://codeforces.com/, is a website that hosts competitive programming contests. “As of 2018, 

it has over 600,000 registered users” (Codeforces, 2021), and the number of users is increasing at 

a progressive rate. If competitors participate in rated contests, their rating will change. I will 

research the way of rating change after the contest based on competitor’s performance. 

 

The effectiveness of the rating system will be evaluated based on data of rating change of 

participants from the past contests. I will compare the rating change predicted by my method and 

program to the official rating change, and use a predictability indicator to measure the extent of 

accuracy. 

 

 

 

2. Description of Codeforces Contest Mechanism 

 

This part is particularly useful for readers desired to investigate the Codeforces contest 

mechanism. 

 

A newly registered user has default rating 1500. There are four divisions in Codeforces contests: 

Div.1 requires a rating greater than 1900, Div.2 requires a rating less than 2100, Div.3 requires a 

rating less than 1600, and Div.4 requires a rating less than 1400. Although Div.4 existed in the 

Codeforces history, it was only held once in Codeforces Round 640 (Div. 4). Contests in other 

three divisions are held regularly.  

 

There are two set of data for a problem: one is pretest and the other one is system test. 

Contestants submit their code to see if it passes every test point in the pretest. If it was 

successful, then the contestant can wait till the end of the contest and wait for the system test. 

Only codes that pass system test earn the scores for a problem. 

 

For the problems in a contest, every problem has an initial score, with the convention of the 

easiest task, A, worth 500 points and the hardest task, E or F or G, worth 3500 points. Other 

problems have different points but the point increases with difficulty. Also, there is a mechanism 

of problems devaluating with time. For a regular 2-hour contest, the value of a problem 

decreases at a rate of 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑐𝑜𝑟𝑒

250
 per minute. If the problem is successfully accomplished, then it 

https://codeforces.com/
https://codeforces.com/contest/1561/standings


will stop devaluating. There is penalty for submitting the problems as well. For each 

unsuccessful attempt that fails the pretest, the contestant loses 50 marks to the problem.  

 

Another interesting concept, also the unique and symbolistic feature of Codeforces contests, is 

“hacking.” Dozens of contestants are allocated to the same room, and they can view each other’s 

code after successfully passing the pretest of a problem. Then contestants in the room can 

meticulously design some data to kill other people’s code. If it was successful, i.e. other people’s 

code fails the special data, then it is a “successful hack,” and this set of data will be used at the 

system test. A successful hack brings an extra 100 points to this problem; however, an 

“unsuccessful hack” result in a 50 points reduction. Although hacking other’s codes is fun, the 

risk is noticeable, and most hackings are not easy since the pretest usually consists of tens or 

hundreds of data points. 

 

Despite all those rules, no matter how many attempts or unsuccessful hacks the contestant did, 

when he or she solves the problem, the score for it cannot drop below 30% of its original points. 

“For example, if the problem B was solved after 10 minutes of contest, then it costs 1000 − 4 ∙
10 = 960 points. For each attempt there is penalty of 50 points. So, if the problem B was solved 

after 10 minutes from the beginning with the third attempt, the score for it is 1000 − 4 ∙ 10 − 2 ∙
50 = 860 points.” (Mirzayanov, 2010). Table 1 is copied from the official blog to help illustrate 

the rule.  

 
Table 1. Codeforces contest mechanism sample 

Problem 
Max. 
score 

Min. score (30%) 
Loss (points per 

minute) 
Score at the contest 

end 

A 500 150 2 points 260 

B 1000 300 4 points 520 

C 1500 450 6 points 780 

D 2000 600 8 points 1040 

E 2500 750 10 points 1300 

 

 

 

3. My Rating System – Multi-Competitor Elo Method  
 

I decided to change the classical Elo rating method a little to produce a multi-competitor variant.  

 

Assume the number of competitors in a given match is 𝑛. Assume competitor 𝑖 has ranking 

𝑟𝑎𝑛𝑘𝑖, original rating 𝑟𝑖, predicted change in rating ∆𝑟𝑖 , predicted new rating 𝑟𝑖
∗, and official new 

rating 𝑟𝑖
′. Let competitor A be the 1st competitor and B be the 2nd competitor.  

 

Define the 𝑃𝑟𝑜𝑏 function that returns the probability of A losing to B. 

 

𝑃𝑟𝑜𝑏(𝑟1, 𝑟2) =
1

1 + 10
𝑟1−𝑟2
400

(1) 



 

Then, with the idea of “each session or race is treated as if it were a round-robin 1-on-1 

tournament” (Moore, 2018), every competitor in this Codeforces competition should play a 

round-robin as well. Therefore, I assume that every two competitors had a competition based on 

their rating, and the expected rank of competitor 𝑖 is the sum of all expected probability of player 

𝑖 losing the match against every player. Hence,  

 

𝑟𝑖
∗ =∑𝑃𝑟𝑜𝑏(𝑟𝑖 , 𝑟𝑗)

𝑛

𝑗=1

(2) 

 

However, there is a bit of imperfection in equation (2). 𝑃𝑟𝑜𝑏(𝑟𝑖 , 𝑟𝑖) is always 0.5 because a 

player has equal ability when competing with oneself. In addition, the expected ranking for the 

best player, theoretically, is 0 + 0 + 0 +⋯+ 0 = 0.5, but should be #1 in conventions. So, I 

add 0.5 to the ranking estimator in equation (2). 
 

𝑟𝑖
∗ =∑𝑃𝑟𝑜𝑏(𝑟𝑖 , 𝑟𝑗)

𝑛

𝑗=1

+ 0.5 (3) 

 

Proposition: The sum of all expected rankings should equal 1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
.  

 

Proof of proposition: 

 

∑𝑟1
∗

𝑛

𝑖=1

=∑(∑𝑃𝑟𝑜𝑏(𝑟1, 𝑟2) + 0.5

𝑛

𝑗=1

)

𝑛

𝑖=1

 

=∑∑𝑃𝑟𝑜𝑏(𝑟1, 𝑟2)

𝑛

𝑗=1

𝑛

𝑖=1

+∑0.5

𝑛

𝑖=1

 

=∑ ∑ (𝑃𝑟𝑜𝑏(𝑟1, 𝑟2) + 𝑃𝑟𝑜𝑏(𝑟2, 𝑟1))

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

+∑𝑃𝑟𝑜𝑏(𝑟𝑖 , 𝑟𝑖)

𝑛

𝑖=1

+∑0.5

𝑛

𝑖=1

 

=∑ ∑ 1

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

+∑0.5

𝑛

𝑖=1

+∑0.5

𝑛

𝑖=1

 

=
𝑛(𝑛 − 1)

2
+
𝑛

2
+
𝑛

2
 

=
𝑛(𝑛 + 1)

2
 

 

Which satisfies the requirement. 

 



Define a function 𝐸𝑙𝑜𝑅𝑎𝑡𝑖𝑛𝑔(𝑟1, 𝑟2, 𝑡𝑖𝑒) to calculate the change in the rating for competitor A 

and B, given that A beats B. If 𝑡𝑖𝑒 is true then A and B have the same ranking. Define 𝑃1 be the 

probability that A beats B, and 𝑃2 be the probability that B beats A.  

 

In 𝐸𝑙𝑜𝑅𝑎𝑡𝑖𝑛𝑔(𝑟1, 𝑟2, 𝑡𝑖𝑒): 
 

𝑃2 = 𝑃𝑟𝑜𝑏(𝑟1, 𝑟2) 
𝑃1 = 𝑃𝑟𝑜𝑏(𝑟2, 𝑟1) 

{
 

 {
∆𝑟1 = 𝐾(0.5 − 𝑃1)

∆𝑟2 = 𝐾(0.5 − 𝑃2)
 , 𝑡𝑖𝑒 = 𝑡𝑟𝑢𝑒

{
∆𝑟1 = 𝐾(1 − 𝑃1)

∆𝑟2 = 𝐾(0 − 𝑃2)
 , 𝑡𝑖𝑒 = 𝑓𝑎𝑙𝑠𝑒

 

 

I would go through every pair of competitors to calculate their change in rating. The final change 

in rating is the sum of all ∆𝑟s in 𝐸𝑙𝑜𝑅𝑎𝑡𝑖𝑛𝑔 function. And the expected rating is: 

 
𝑟𝑖
∗ = 𝑟𝑖 + ∆𝑟𝑖 (4) 

 

The rating numbers in Codeforces are usually integers; hence, I use the 𝑟𝑜𝑢𝑛𝑑 function to 

convert the new rating to an integer. 

 
𝑟𝑖
∗ = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑖 + ∆𝑟𝑖) (5) 

 

Additionally, in order to prevent certain strong competitors from getting an extremely high rating 

from finishing #1 in several matches in a row, I decide to change the 𝐾 value for top competitors. 

This idea will be illustrated later. 

 

For analyzing the effectiveness of my prediction, I use a “predictability index”, which is the 

“Mean Square Error” or 𝑀𝑆𝐸, of the scorings of all round-robin matches. In a competition I 

record the expected new ratings and the real win-lose relationships between every pair of 

competitors. Then we have,  

 

𝑀𝑆𝐸 =∑ ∑ (𝑃𝑟𝑜𝑏(𝑟𝑗
∗, 𝑟𝑖

∗) − 𝑜𝑏𝑠𝑖,𝑗)
2

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

(6) 

 

Where 𝑜𝑏𝑠𝑖,𝑗  calculates the win-lose relationship between participant 𝑖 and 𝑗. 

 

𝑜𝑏𝑠𝑖,𝑗 = {

1, 𝑟𝑎𝑛𝑘𝑖 < 𝑟𝑎𝑛𝑘𝑗
0.5, 𝑟𝑎𝑛𝑘𝑖 > 𝑟𝑎𝑛𝑘𝑗  

0, 𝑟𝑎𝑛𝑘𝑖 = 𝑟𝑎𝑛𝑘𝑗

(7) 

 

Because there are 
𝑛(𝑛−1)

2
 pairs of matches from 𝑛 competitors, we need to divide equation (6) by 

𝑛(𝑛−1)

2
.  



 

𝑀𝑆𝐸 =∑ ∑ (𝑃𝑟𝑜𝑏(𝑟𝑗
∗, 𝑟𝑖

∗) − 𝑜𝑏𝑠𝑖,𝑗)
2

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

𝑛(𝑛 − 1)

2
⁄ (8) 

 

The idea of this formula is adapted from “http://opisthokonta.net/?p=1387” (Opisthokonta et al., 

2016). 

 

A smaller 𝑀𝑆𝐸 value indicates that my method works for the win-lose relationship for more 

pairs of competitors. For example, if competitor 𝐴 loses to competitor 𝐵, and the expected rating 

of competitor 𝐴 is indeed higher than competitor 𝐵, then it is a correct prediction for this pair of 

competitors.  

 

 

 

4. Apply it on Data and Check Result 
 

The data I use here comes from the Codeforces website. The ranks and scores for each 

competitor in every competition is accessible on the website. According to the Codeforces 

competition rules, only users with a rating greater than 1900 are eligible to participate the Div.1 

contests, which is the hardest among all divisions and the type with least participants, 

approximately 1000. This data size is large enough to analyze the rating system but not 

excessively large to waste a long time in program; therefore, I decide to collect the data of 

contestants’ rankings, handles (means ID in Codeforces), official old ratings and new ratings on 

the closest 20 Div.1 matches. The effectiveness of prediction is reflected by the Average 𝑀𝑆𝐸 

value for the 20 matches, and I will call it 𝐴𝑀𝑆𝐸. 

 
Table 2. The Closest 20 Div.1 matches 

Index Contest Name Contest ID 

1 Codeforces Round #673 (Div. 1)  1416 

2 Codeforces Round #680 (Div. 1, based on Moscow Team Olympiad)  1444 

3 Codeforces Round #681 (Div. 1, based on VK Cup 2019-2020 – 
Final)  

1442 

4 Codeforces Round #683 (Div. 1, by Meet IT)  1446 

5 Codeforces Round #684 (Div. 1)  1439 

6 Codeforces Round #687 (Div. 1, based on Technocup 2021 
Elimination Round 2)  

1456 

7 Codeforces Round #691 (Div. 1)  1458 

8 Codeforces Round #692 (Div. 1, based on Technocup 2021 
Elimination Round 3)  

1464 

9 Codeforces Round #694 (Div. 1)  1470 

10 Codeforces Round #698 (Div. 1)  1477 

11 Codeforces Round #700 (Div. 1)  1479 

http://opisthokonta.net/?p=1387
https://codeforces.com/contest/1416
https://codeforces.com/contest/1444
https://codeforces.com/contest/1442
https://codeforces.com/contest/1442
https://codeforces.com/contest/1446
https://codeforces.com/contest/1439
https://codeforces.com/contest/1456
https://codeforces.com/contest/1456
https://codeforces.com/contest/1458
https://codeforces.com/contest/1464
https://codeforces.com/contest/1464
https://codeforces.com/contest/1470
https://codeforces.com/contest/1477
https://codeforces.com/contest/1479


12 Codeforces Round #706 (Div. 1)  1495 

13 Codeforces Round #707 (Div. 1, based on Moscow Open Olympiad 
in Informatics)  

1500 

14 Codeforces Round #709 (Div. 1, based on Technocup 2021 Final 
Round)  

1483 

15 Codeforces Round #712 (Div. 1)  1503 

16 Codeforces Round #715 (Div. 1)  1508 

17 Codeforces Round #722 (Div. 1)  1528 

18 Codeforces Round #728 (Div. 1)  1540 

19 Codeforces Round #732 (Div. 1)  1545 

20 Codeforces Round #736 (Div. 1)  1548 

 

With the Python code from “https://github.com/QAQrz/Codeforces-Rating-

System/blob/master/spider_txt.py” (QAQrz/Codeforces-Rating-System: Codeforces rating 

System (third Party implementation), 2017), I scrape the data from all the 20 contests in Table 1 

to get the result of the closest 20 Div.1 matches. 

 

My target is to minimize the 𝐴𝑀𝑆𝐸 value for each choice of 𝐾. For example, when 𝐾 = 16, the 

𝑀𝑆𝐸 value for each match is shown in Table 2 below. 

 
Table 3. MSE for each contest given K=16 

Index MSE 

1 0.39443 

2 0.402534 

3 0.396674 

4 0.412647 

5 0.413538 

6 0.395988 

7 0.396692 

8 0.400353 

9 0.411328 

10 0.400943 

11 0.414437 

12 0.407261 

13 0.390727 

14 0.403505 

15 0.422167 

16 0.406531 

17 0.419262 

18 0.387294 

https://codeforces.com/contest/1495
https://codeforces.com/contest/1500
https://codeforces.com/contest/1500
https://codeforces.com/contest/1483
https://codeforces.com/contest/1483
https://codeforces.com/contest/1503
https://codeforces.com/contest/1508
https://codeforces.com/contest/1528
https://codeforces.com/contest/1540
https://codeforces.com/contest/1545
https://codeforces.com/contest/1548
https://github.com/QAQrz/Codeforces-Rating-System/blob/master/spider_txt.py
https://github.com/QAQrz/Codeforces-Rating-System/blob/master/spider_txt.py


19 0.421552 

20 0.430927 

 

In this example, the average 𝑀𝑆𝐸 for the 20 matches is 0.4064395. 

 

Then I change the value of 𝐾 to see the pattern of 𝐴𝑀𝑆𝐸 values. 

 

First, with an increment of 1, the data is shown below at Table 3. 

 
Table 4. AMSE from different K values with increment 1 

K AMSE 

-1 0.757543 

0 0.368619 

1 0.122816 

2 0.1218 

3 0.177011 

4 0.227971 

5 0.267187 

6 0.296857 

7 0.319711 

8 0.337735 

9 0.352267 

10 0.364209 

11 0.374183 

12 0.382629 

13 0.389866 

14 0.396133 

15 0.401611 

16 0.406439 

17 0.410727 

18 0.41456 

19 0.418006 

20 0.421122 

 



 
Figure 1. AMSE from different K values with increment 1 

The minimum point of 𝐾 lies between 1 and 3. Then I repeat the process again but with 

increments of 0.1 in region [1,3] to find the desirable 𝐾.  

 
Table 5. AMSE from different K values with increment 0.1 

K AMSE 

1 0.122816 

1.1 0.115815 

1.2 0.110977 

1.3 0.108031 

1.4 0.106728 

1.5 0.106836 

1.6 0.108143 

1.7 0.110455 

1.8 0.113601 

1.9 0.117427 

2 0.1218 

2.1 0.126604 

2.2 0.13174 

2.3 0.137123 

2.4 0.142682 

2.5 0.148358 

2.6 0.154099 

2.7 0.159866 
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2.8 0.165625 

2.9 0.171347 

3 0.177011 

 

 
Figure 2. AMSE from different K values with increment 0.1 

The minimum point of 𝐾 lies between 1.3 and 1.5. Then I repeat the process the third time but 

with increments of 0.01 in region [1.3,1.5] to find the desirable 𝐾. 

 
Table 6. AMSE from different K values with increment 0.01 

K AMSE 

1.3 0.108031 

1.31 0.107831 

1.32 0.107647 

1.33 0.107479 

1.34 0.107326 

1.35 0.107189 

1.36 0.107067 

1.37 0.106961 

1.38 0.106869 

1.39 0.106791 

1.4 0.106728 

1.41 0.106679 

1.42 0.106644 

1.43 0.106622 

1.44 0.106614 

1.45 0.106619 
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1.46 0.106638 

1.47 0.106668 

1.48 0.106712 

1.49 0.106768 

1.5 0.106836 

  

 
Figure 3. AMSE from different K values with increment 0.01 

According to the graph, the 𝐾 value for the average minimum square error value over all 

competitions is 𝐾 = 1.44, accurate to two decimal places. The 𝐴𝑀𝑆𝐸 value corresponding to 

this choice is 0.10661421. 

 

I also display the difference between my predicted new rating and official new rating for every 

competitor. To my surprise, the difference is very large for the several competitors at the top. In 

order to prevent their ratings from getting too large, in other words, prevent the inflation of 

rating, the official rating system implements a way to control the rating change for those top 

competitors. This stimulates me to use a separate 𝐾 for the top competitors that is less than the 

normal 𝐾 value, so the rating of the top will change less. 

 

When 𝐾 = 1.44, I record the number of competitors at top rankings with the absolute value of 

the difference between my predicted new rating and official new rating more than 30. I would 

call these competitors “having a large difference.” 

 
Table 7. Number of competitors with a large difference 

Index Number of top 
competitors 

1 6 

2 6 

3 4 

0.1064

0.1066

0.1068

0.107

0.1072

0.1074

0.1076

0.1078

0.108

0.1082

1.25 1.3 1.35 1.4 1.45 1.5 1.55

K value

AMSE



4 11 

5 2 

6 8 

7 6 

8 3 

9 4 

10 5 

11 13 

12 8 

13 5 

14 8 

15 10 

16 9 

17 9 

18 1 

19 2 

20 12 

 

The average value is 6.6, and to the nearest integer is 7. Therefore, I decide to apply the new 𝐾 

value, call it 𝐾2 that is less than 𝐾, for the top 7 competitors. 

 

Assume 𝐾 = 1.44 for the following cases. With the similar strategy, the minimum point of 𝐾2 

lies between 0 and 1.5. With increment of 0.1 in region [0,1.5], the respective 𝐴𝑀𝑆𝐸 value is 

shown below:  

 
Table 8. AMSE from different K2 values with increment 0.1 

K2 AMSE 

0 0.10687289 

0.1 0.10650347 

0.2 0.10643026 

0.3 0.10640743 

0.4 0.10639879 

0.5 0.10639538 

0.6 0.10639407 

0.7 0.10639359 

0.8 0.10639346 

0.9 0.10639354 

1 0.10639376 

1.1 0.10639405 

1.2 0.10639439 



1.3 0.10639474 

1.4 0.10639509 

1.5 0.10639545 

 

  
Figure 4. AMSE from different K2 values with increment 0.1 

The minimum point of 𝐾2 lies between 0.7 and 0.9. Then I repeat the process again with 

increments of 0.01 in region [0.7,0.9] to find the desirable 𝐾2. 

 
Table 9. AMSE from different K2 values with increment 0.01 

K2 AMSE 

0.7 0.10639359 

0.71 0.10639356 

0.72 0.10639354 

0.73 0.10639352 

0.74 0.10639351 

0.75 0.1063935 

0.76 0.10639348 

0.77 0.10639348 

0.78 0.10639347 

0.79 0.10639347 

0.8 0.10639346 

0.81 0.10639346 

0.82 0.10639347 

0.83 0.10639347 

0.84 0.10639348 

0.85 0.10639348 
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0.86 0.10639349 

0.87 0.1063935 

0.88 0.10639352 

0.89 0.10639353 

0.9 0.10639354 

 

 
Figure 5. AMSE from different K2 values with increment 0.01 

The minimum 𝐴𝑀𝑆𝐸 value from this new approach is 0.10639346, when 𝐾2 = 0.8 or 0.81. I 

would estimate that when 𝐾2 = 0.805, the midpoint of range [0.8,0.81], 𝐴𝑀𝑆𝐸 will be 

minimized. 

 

 
 

5. Conclusion 
 

The research of this paper developed my novel rating method based on the Elo method designed 

to produce a multi-competitor Elo method. Data from 20 closest Div.1 matches was used to test 

the predictability of my method. The multi-competitor Elo method's 𝐾 value was chosen to 

minimize the 𝐴𝑀𝑆𝐸 value. Another 𝐾 value for the top 7 competitors improved the method's 

𝐴𝑀𝑆𝐸 value, assuring the reliability of the method. 

 

Further improvements and future work are possible. Despite the fact that the first several 

competitors have a more accurate rating, there are still notable differences between the official 

rating and my predicted rating. Different K values for different portions of ranking could be 

developed. Note, such a tuning requires significant computation to choose the 𝐾 value properly. 

The inaccuracy of my prediction is a limitation. 

 

Questions beyond algorithm tuning are also possible. For instance, future work could explore 

allowing Codeforce users to determine how high of a competition rank is required to prevent 

0.1063934

0.1063935
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0.1063935

0.1063935

0.1063935

0.1063936

0.1063936

0.1063936

0.68 0.73 0.78 0.83 0.88 0.93

K2 values

AMSE



their overall rating from falling. Many competitors attend the contest, and even if they do not 

have a high rise in rating, they hope their overall rating does not fall. Another feature would be to 

provide a clever strategy of attaining a higher score in Codeforce contests. The essential strategy 

would integrate time allocation because the more time spent on solving a problem, the more 

points a contestant loses. This strategy causes some strong competitors to change the order of 

solving problems, such as solving the last problem at first to earn the most points. Note, the first 

two problems are usually simple, and there is much less penalty for solving them late. As such, 

many people can solve them after finishing other valuable problems. Such steps would enhance 

and enrich research in ranking Codeforce competitions. 
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Appendix 

 

1. Python code for scraping the data from the closest 20 Div.1 contests (QAQrz/Codeforces-

Rating-System: Codeforces rating System (third Party implementation), 2017) 

1. # coding=utf-8   
2. import json   
3. import sys   
4. import requests   
5.    
6.    
7. # Get official rating changes data from Codeforces API   
8. def get_rating(contest_id):   
9.     url = 'http://codeforces.com/api/contest.ratingChanges?contestId={}'.format(contest

_id)   
10.     rst = requests.get(url)   
11.     json_response = rst.content.decode()   
12.     dict_json = json.loads(json_response)   
13.     if dict_json['status'] == 'OK':   
14.         return dict_json['result']   
15.     else:   
16.         return None   
17.    
18.    
19. def work(contest_id):   
20.     data = get_rating(contest_id)   
21.     if data:   
22.         with open('tests/cf_rating_official_{}.txt'.format(contest_id), 'w') as f:   
23.             for d in data:   
24.                 f.write('{} {} {} {}\n'.format(d['rank'], d['handle'], d['oldRating'], 

d['newRating']))   
25.     else:   
26.         print('error!')   
27.    
28.    
29. if __name__ == '__main__':   
30.     if len(sys.argv) < 2:   
31.         print('Usage: python3 file_name.py [codeforces_contest_id]')   
32.         sys.exit(1)   
33.     contest_id = sys.argv[1]   
34.     work(contest_id) 

 

2. C++ code for calculating the expected rating change 

1. #include <cstdio>   



2. #include <iostream>   
3. #include <fstream>   
4. #include <cmath>   
5. #include <algorithm>   
6. #include <string>   
7. #include <vector>   
8. #define DEBUG printf("passing [%s] in line %d\n",__FUNCTION__,__LINE__);   
9. using namespace std;   
10.    
11. struct user {   
12.     double rank;   
13.     string handle;   
14.     int old_rating;   
15.     int official_new_rating;   
16.     double new_rating = 0.0;   
17.     double exp_ranking = 0.5;   
18.     double delta = 0.0;   
19.     string validation;   
20. } u;   
21. vector<user> users;   
22. string contest_ids[21] = {"1416","1444","1442","1446","1439","1456","1458","1464","1470

","1477","1479","1495","1500","1483","1503","1508","1528","1540","1545","1548"};   
23. double aveMSE;   
24.    
25. string to_string(user &u) {   
26.     char s[200];   
27.     sprintf(s, "%5.0f  %-24s seed: %12.6f  rating: %4d -> %4f vs %4d%s\n",   
28.         round(u.rank),   
29.         u.handle.c_str(),   
30.         u.exp_ranking,   
31.         u.old_rating,   
32.         u.new_rating,   
33.         u.official_new_rating,   
34.         u.validation.c_str()   
35.     );   
36.     return string(s);   
37. }   
38.    
39. string to_string(vector<user> &users) {   
40.     string s;   
41.     for(int i = 0; i < users.size(); i++) {   
42.         s += to_string(users[i]);   
43.     }   
44.     return s;   
45. }   
46.    
47. void reassign_rank() {   
48.     int last_idx = 0, last_rank = 1;   
49.     for(int i = 0; i < users.size(); i++) {   
50.         if(users[i].rank > last_rank) {   
51.             for(int j = last_idx; j < i; ++j)   
52.                 users[j].rank = i;   
53.             last_idx = i;   
54.             last_rank = users[i].rank;   
55.         }   
56.     }   
57.     for(int i = last_idx; i < users.size(); i++)    
58.         users[i].rank = users.size();   
59. }   
60.    
61. //Probability of player A loses / B wins   



62. double Prob(double rating1, double rating2) {   
63.     return 1.0 / (1.0 + pow(10, (rating1 - rating2) / 400.0));   
64. }   
65.    
66. //Function to calculate Elo rating    
67. //K is a constant.    
68. //Player A wins over Player B.     
69. //tie = true if tie, false otherwise   
70. pair<double,double> EloRating(double Ra, double Rb, double k, bool tie) {   
71.     double Pa,Pb,deltA,deltB;   
72.     Pb=Prob(Ra,Rb);//prob of b winning   
73.     Pa=Prob(Rb,Ra);//prob of a winning   
74.     if(tie) {   
75.         deltA=k*(0.5-Pa);   
76.         deltB=k*(0.5-Pb);   
77.     }   
78.     else {   
79.         deltA=k*(1-Pa);   
80.         deltB=k*(0-Pb);   
81.     }   
82.     return make_pair(deltA,deltB);   
83. }   
84.    
85. void calExpRanking(double k) {   
86.     for(int i=0;i<users.size();i++) {   
87.         for(int j=0;j<users.size();j++) {   
88.             users[i].exp_ranking+=Prob(users[i].old_rating,users[j].old_rating);   
89.         }   
90.     }   
91. }   
92.    
93. void newWork(double k) {   
94.     for(int i=0;i<users.size();i++) {   
95.         for(int j=i+1;j<users.size();j++) {   
96.             pair<double,double> pr;   
97.             if(users[i].rank<users[j].rank) {   
98.                 pr=EloRating(users[i].old_rating,users[j].old_rating,k,false);   
99.                 users[i].delta+=pr.first;   
100.                 users[j].delta+=pr.second;   
101.             }   
102.             else if(users[i].rank>users[j].rank) {   
103.                 pr=EloRating(users[j].old_rating,users[i].old_rating,k,false);   
104.                 users[j].delta+=pr.first;   
105.                 users[i].delta+=pr.second;   
106.             }   
107.             else {   
108.                 pr=EloRating(users[i].old_rating,users[j].old_rating,k,true);   
109.                 users[i].delta+=pr.first;   
110.                 users[j].delta+=pr.second;   
111.             }   
112.         }      
113.     }   
114. }   
115.    
116. void update(double K, double K2) {   
117.     for(int i=0;i<7;i++)    
118.         users[i].new_rating=users[i].old_rating+users[i].delta*K2/K;   
119.     for(int i=7;i<users.size();i++)    
120.         users[i].new_rating=users[i].old_rating+users[i].delta;   
121. }   
122.    



123. double validate() {   
124.     double tot=0.0;   
125.     for(int i=0;i<users.size();i++) {   
126.         for(int j=0;j<users.size();j++) {   
127.             if(users[i].rank<users[j].rank) {   
128.                 tot+=pow(Prob(users[j].new_rating,users[i].new_rating)-1,2);   
129.             }   
130.             else if(users[i].rank>users[j].rank) {   
131.                 tot+=pow(Prob(users[j].new_rating,users[i].new_rating)-0,2);   
132.             }   
133.             else {   
134.                 tot+=pow(Prob(users[j].new_rating,users[i].new_rating)-0.5,2);   
135.             }   
136.         }   
137.     }   
138.     char s[20];   
139.     for(int i = 0; i < users.size(); i++) {   
140.         if(users[i].new_rating != users[i].official_new_rating) {   
141.             sprintf(s, " [diff: %5f]", users[i].new_rating - users[i].official_n

ew_rating);   
142.             users[i].validation = string(s);   
143.         }   
144.     }   
145.     int amount=users.size()*(users.size()-1)/2;   
146.     return tot/amount;   
147. }   
148.    
149. int main() {   
150.     ofstream outAMSE("tests/AMSE.csv", ios::out | ios::trunc);   
151.     outAMSE << "K" << "," << "AMSE" << endl;   
152.     ofstream outMSE("tests/MSE.csv", ios::out | ios::trunc);   
153.     outMSE << "Index" << "," << "MSE" << endl;   
154.    
155.     for(double K=-1;K<=20;K+=1) {   
156.         aveMSE=0;   
157.         for(int i=0;i<20;i++) {   
158.             users.clear();   
159.             string contest_id = contest_ids[i];   
160.             string in_file = "tests/cf_rating_official_" + contest_id + ".txt"; 

  
161.             ifstream in(in_file, ios::in);   
162.             while(in >> u.rank >> u.handle >> u.old_rating >> u.official_new_rat

ing)    
163.                 users.push_back(u);   
164.             in.close();   
165.             reassign_rank();   
166.             calExpRanking(K);   
167.             newWork(K);   
168.             update(K,K2);   
169.             double MinSqErr=validate();   
170.                
171.             //printf("In contest id %s, MinSqErr for simulation: %.8f\n",contest

_id.c_str(),MinSqErr);             
172.             outMSE << i+1 << "," << MinSqErr << endl;   
173.                
174.             aveMSE += MinSqErr;   
175.             string out_file = "tests/cf_rating_result_" + contest_id + ".txt";   
176.             ofstream outFile(out_file, ios::out);   
177.             outFile << to_string(users);   
178.             outFile.close();   
179.         }   



180.         outAMSE << K << "," << aveMSE/20 << endl;   
181.         printf("K=%.2f, AveMinSqErr value: %.8f\n",K,aveMSE/20);   
182.     }   
183.     outAMSE.close();   
184.     return 0;   
185. }   

 


