
 Page 1 of 19

Math Extended Essay

Maximize the Value of a knapsack

How to maximize the value of a knapsack given the knapsack’s weight capacity and a set of items,

each with a weight and a value?

Word count: 3810

 Page 2 of 19

Table of Contents

1. Introduction .. 4

2. State Research Question .. 4

2.1. Definition .. 4

2.2. Different Cases of the Knapsack Problem ... 4

2.3 Definition of Key Terms .. 5

3. Examples and Methods .. 6

3.1. Example 1 ... 6

3.1.1. Solution ... 6

3.1.2. Method 0 .. 7

3.2. Example 2 ... 7

3.2.1. Solution Using Method 0 .. 7

3.2.2. Reflection and Evaluation ... 8

3.3. Method 1 .. 8

3.3.1. Methodology .. 8

3.3.2. Reflection and Evaluation ... 9

3.4. Method 2 .. 9

3.4.1. Methodology .. 9

3.4.2. Reflection and Evaluation ...10

3.5. Method 3 .. 11

3.5.1. Methodology ..11

3.5.2. Reflection and Evaluation ...12

3.6. Method 4 .. 12

3.6.1. Methodology ..12

 Page 3 of 19

3.6.2. Reflection and Evaluation ...13

3.7. Method 5 .. 14

3.7.1. Methodology ..14

3.7.2. Reflection and Evaluation ...15

3.8. Method 6 .. 15

3.8.1. Methodology ..15

3.8.2. Reflection and Evaluation ...16

4. Further Explanation ... 16

4.1. General Evaluation .. 16

4.2. Extension: Multi-dimensional Weight Requirement .. 17

4.2.1. Definition ..17

4.2.2. Solution ...17

5. Conclusion ... 18

6. Bibliography .. 18

 Page 4 of 19

1. Introduction

A common challenge for programming competitions is the knapsack problem – “given a set of

items, each with a weight and a value, determine the number of each item to include in a collection

so that the total weight is less than or equal to a given limit while maximizing the total value”

(Knapsack problem - 2021). The problem’s simple conception and its complexity in real analysis

fascinated me, so I choose this type of problem to investigate. My main focus for this essay would

be a proposal of methods to solve the problems, and optimization processes to make my methods

more efficient, and testing them using randomly generated data.

2. State Research Question

2.1. Definition

To describe the knapsack problem in plain language:

“Given a set of items, each with a weight and a value, determine the number of each item to include

in a collection so that the total weight is less than or equal to a given limit and the total value is as

large as possible.” (Knapsack problem - 2021)

To describe the knapsack problem in mathematical terms:

Given 𝑛 items, numbered from 1 up to 𝑛. The ith item has a weight of 𝑤𝑖 , a value of 𝑣𝑖 and a

maximum amount of 𝑚𝑖; 𝑥𝑖 is the number of the irh item to include in a knapsack of weight capacity

𝑊 in order to

Maximize ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1

Subject to ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ≤ 𝑊 and 𝑥𝑖 ≤ 𝑚𝑖 ∀𝑖 ∈ [1, n].

2.2. Different Cases of the Knapsack Problem

When 𝑚𝑖 = 1 ∀𝑖 ∈ [1, n], it is the “0-1 knapsack problem” (Knapsack problem - 2021), meaning

that there is only one for each item, and it can either be chosen or not chosen.

 Page 5 of 19

When 𝑚𝑖 = 𝑐𝑖 ∀𝑖 ∈ [1, n], where 𝑐𝑖 is an arbitrary positive integer, it is the “bounded knapsack

problem” (Knapsack problem - 2021). It is the most common case in real life.

When 𝑚𝑖 = ∞ ∀𝑖 ∈ [1, n], it is the “unbounded knapsack problem” (Knapsack problem - 2021).

There is no limit on the number of items.

Because the three cases are similar, I would only analyze the bounded knapsack problem because

the solution to the two other cases are similar. The 0-1 knapsack problem is a special case of the

bounded knapsack problem when 𝑐 = 1, and the unbounded knapsack problem is another special

case when 𝑐 = ∞.

To begin with, I would like to introduce two basic examples of the question and develop a

preliminary method. Then I will gradually extend and optimize the method.

2.3 Definition of Key Terms

1. In this essay, all variables are non-negative integers. The only exception is 𝑎𝑣𝑒𝑉𝑎𝑙s, which can

be any rational number.

2. A “scheme” refers to a way of selecting different quantities of different items to completely fill a

knapsack of a given weight capacity. In mathematical language, a “scheme” is a way of filling the

knapsack using 𝑥𝑖 number of item 𝑖 ∀𝑖 ∈ [1, 𝑛] to completely fill a knapsack of weight 𝑤.

3. If the variables of max function involves 𝑖 or 𝑗, e.g. max (𝑤𝑖𝑥𝑗), it means the maximum value of

𝑤𝑖𝑥𝑗 for all possible 𝑖 and 𝑗.

4. “Memory cost” measures the approximate memory required to store a function as a matrix in a

computer. The matrix has the same dimension as the function, and its value is same as the function

value when all variables are the same. The memory cost is the product of the number of choices for

each dimension. It is most directly affected by the dimension of the function.

 Page 6 of 19

5. “Number of steps” of a method measures the approximate effort required to calculate the result

using the method. Usually, we are interested in the approximate number of steps, so simple

arithmetic such as plus 1 on a variable is ignored.

3. Examples and Methods

3.1. Example 1

Three items are given, labeled A, B, and C respectively. There are 4 As, each with a value of 6 and

a weight of 2. There are 3 Bs, each with a value of 5 and a weight of 2. There are two Cs, each with

a value of 10 and weight 3. The maximum weight capacity is eleven. Find the maximum total value

available.

3.1.1. Solution

It is straightforward to think that only when the value per unit weight is large can the total value be

large. Then we calculate the average value per unit weight of an item, and call it 𝑎𝑣𝑒𝑉𝑎𝑙𝑖 for item 𝑖.

We get the following data:

𝑎𝑣𝑒𝑉𝑎𝑙𝐴 =
6

2
= 3

𝑎𝑣𝑒𝑉𝑎𝑙𝐵 =
5

2
= 2.5

𝑎𝑣𝑒𝑉𝑎𝑙𝐶 =
10

3
= 3.3333 …

𝑎𝑣𝑒𝑉𝑎𝑙𝑐 > 𝑎𝑣𝑒𝑉𝑎𝑙𝐴 > 𝑎𝑣𝑒𝑉𝑎𝑙𝐵, so we first choose as many Cs as possible, then as many As as

possible, finally as many Bs as possible. We first choose all the Cs to get a value of 20 and a weight

of 6. Then, for 11 − 6 = 5 units of weight left, we choose ⌊
5

2
⌋ = 2 As to produce the total value of

32 and total weight of 10. The 1 unit of weight left cannot be used to put Bs inside, so the process

ends and the maximum value is 32, derived from 2As and 2Cs.

 Page 7 of 19

3.1.2. Method 0

By summarizing the process in solving example 1, I have come up with method 0. Note that it is

called method “0” because it reflects some the same methodology as the first idea but leads to

wrong results.

1. By default, initialize: 𝑥𝑖 = 0 ∀𝑖 ∈ [1, 𝑛].

2. Let 𝑎𝑣𝑒𝑉𝑎𝑙𝑖 be the average value per unit of weight for item 𝑖, calculate 𝑎𝑣𝑒𝑉𝑎𝑙𝑖 =
𝑣𝑖

𝑤𝑖
.

3. Sort 𝑎𝑣𝑒𝑉𝑎𝑙s in descending order.

4. Suppose item 𝑗 has the largest 𝑎𝑣𝑒𝑉𝑎𝑙, continue taking it until either there is no more this type of

items left, or the capacity limit is reached. 𝑥𝑗 = min (𝑚𝑗 , ⌊
𝑊𝑙𝑒𝑓𝑡

𝑤𝑗
⌋), where 𝑊𝑙𝑒𝑓𝑡 is the weight

capacity left after the previous step.

5. Change 𝑊𝑙𝑒𝑓𝑡’s value to 𝑊𝑙𝑒𝑓𝑡 − 𝑥𝑗𝑤𝑗. This indicates the change of weight capacity left after

taking item 𝑗.

6. Repeat process 4 and 5 until either every item is chosen, or the capacity limit is reached.

7. Calculate the total value: ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1 .

This method seems pretty useful. However, I want to examine another example.

3.2. Example 2

Three items are given, labeled A, B, and C respectively. There are 3 As, each with a value of 9 and

a weight of 5. There are 5 Bs, each with a value of 1 and a weight of 1. There is 1 C, with a value of

22 and weight 11. The maximum weight capacity is 15. Find the maximum total value available.

3.2.1. Solution Using Method 0

First, calculate all 𝑎𝑣𝑒𝑉𝑎𝑙s.

𝑎𝑣𝑒𝑉𝑎𝑙𝐴 =
9

5
= 1.8

 Page 8 of 19

𝑎𝑣𝑒𝑉𝑎𝑙𝐵 =
1

1
= 1

𝑎𝑣𝑒𝑉𝑎𝑙𝐶 =
22

11
= 2

𝑎𝑣𝑒𝑉𝑎𝑙𝑐 > 𝑎𝑣𝑒𝑉𝑎𝑙𝐴 > 𝑎𝑣𝑒𝑉𝑎𝑙𝐵, so we first choose C, then choose B.

𝑊𝑙𝑒𝑓𝑡 = 15, 𝑥𝑐 = min (𝑚𝑐 , ⌊
𝑊𝑙𝑒𝑓𝑡

𝑤𝑐
⌋) = min (1, ⌊

15

11
⌋) = 1

𝑊𝑙𝑒𝑓𝑡 = 4, 𝑥𝐵 = min (𝑚𝐵, ⌊
𝑊𝑙𝑒𝑓𝑡

𝑤𝐵
⌋) = min (5, ⌊

4

1
⌋) = 4

𝑊𝑙𝑒𝑓𝑡 = 0

By default, 𝑥𝐴 = 0. So the maximum total value is ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1 = 22 ∙ 1 + 1 ∙ 4 = 26.

3.2.2. Reflection and Evaluation

The weight capacity, 15, can hold exactly 3 As, producing a total value of 9 ∙ 3 = 27. 27 > 26. The

previous method clearly doesn’t work.

I reexamined my method. After I place a C, the knapsack gets only 4 units of weight left, and I can

only put Bs in it. B’s 𝑎𝑣𝑒𝑉𝑎𝑙 is only 1 while A’s 𝑎𝑣𝑒𝑉𝑎𝑙 is 1.8, so it is much less worthy of using

Bs than As.

I used an idea of “greedy algorithm” (Greedy algorithm - Wikipedia, 2021) that “makes the locally

optimal choice at each stage” (Greedy algorithm - Wikipedia, 2021) but ignored the actual optimal

choice.

Then I tried some other methods.

3.3. Method 1

3.3.1. Methodology

 Page 9 of 19

The most straightforward way is enumeration, i.e., trying every possible way of putting items in the

knapsack. 𝑥𝑖 ∈ [0, 𝑚𝑖] ∀𝑖 ∈ [1, 𝑛]. The number to include for item 𝑖 has 𝑚𝑖 + 1 choices, so we try

all of the possible 𝑥𝑖 values for each 𝑖, and calculates the maximum value.

3.3.2. Reflection and Evaluation

However, this method takes way too much time. There are ∏ (𝑚𝑖 + 1)𝑛
𝑖=1 possible ways to put

those items in the knapsack, so it roughly takes ∏ 𝑚𝑖
𝑛
𝑖=1 number of steps.

Notice that when 𝑤𝑖𝑥𝑖 > 𝑊, it exceeds the weight capacity. The maximum number of item 𝑖 to

include in a knapsack is actually min (𝑚𝑖 , ⌊
𝑊

𝑤𝑖
⌋).

3.4. Method 2

3.4.1. Methodology

Let 𝑃 = lcm
1≤𝑖≤𝑛

(𝑤𝑖), where lcm refers to “least common multiple” (Least common multiple -

Wikipedia, 2021) of all 𝑤𝑖 values. The purpose is to ensure that the method works in weight

capacity from 0 to 𝑃, as multiple schemes can lead to the same weight. Hence, we can use the

enumeration method to settle the optimal choice for a weight capacity under 𝑃. For weight

capacities greater than 𝑃, we use the greedy idea in method 0. That is to say,

If 𝑊 > 𝑃, then:

1. Use method 0 to calculate 𝑥𝑖s until 𝑊𝑙𝑒𝑓𝑡 = 𝑃.

2. Use method 1 to calculate the optimal scheme for a weight capacity of 𝑃. Notice that the

maximum number of item 𝑖 to include in a knapsack is actually min (𝑚𝑖 , ⌊
𝑊

𝑤𝑖
⌋).

3. Combine 𝑥𝑖 values in step 1 and 2.

4. Calculate the total value: ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1 .

If 𝑊 ≤ 𝑃, then:

 Page 10 of 19

Use method 1 to calculate the maximum value.

3.4.2. Reflection and Evaluation

The steps required in the enumeration part is ∏ (min (𝑚𝑖 , ⌊
𝑃

𝑤𝑖
⌋) + 1)𝑛

𝑖=1 , approximately

∏ min (𝑚𝑖 , ⌊
𝑃

𝑤𝑖
⌋)𝑛

𝑖=1 . It significantly reduces the steps when 𝑊 ≫ 𝑃.

However, enumeration still seems undesirable when 𝑃 is large.

Let 𝑓(𝑤) be the maximum value obtained from completely filling a knapsack of weight capacity 𝑤.

Then, 𝑓(𝑤) may lead to other 𝑓 values: if we add another item in the knapsack, then the maximum

value may change. So, we consider every item that can be put in the knapsack. If one item 𝑖 is

selected, then the value changes by 𝑣𝑖 and weight changes by 𝑤𝑖 . When there is still enough

capacity to select an extra item 𝑖 (𝑤 + 𝑤𝑖 ≤ 𝑊) and there are still items left (𝑥𝑖 + 1 ≤ 𝑚𝑖), we

have:

𝑓(𝑤 + 𝑤𝑖) = 𝑓(𝑤) + 𝑣𝑖

Add a max function to indicate that 𝑓(𝑤 + 𝑤𝑖) is the optimal value from selecting one of the 𝑛

different items. Also, included 𝑓(𝑤 + 𝑤𝑖) itself in the max function, to represent the case that no

new items are selected.

𝑓(𝑤 + 𝑤𝑖) = max(𝑓(𝑤 + 𝑤𝑖), 𝑓(𝑤) + 𝑣𝑖)

To write it in a more readable form:

𝑓(𝑤) = max
1≤𝑖≤𝑛

(𝑓(𝑤), 𝑓(𝑤 − 𝑤𝑖) + 𝑣𝑖)

Given that 𝑤 − 𝑤𝑖 ≥ 0 and 𝑥𝑖 + 1 ≤ 𝑚𝑖 .

However, it is hard to keep track of the items selected in each process, which is, we don’t know 𝑥𝑖

and cannot ensure that we are not taking more items than the total items given. So, I decide to add

𝑥𝑖s to the variable of the function: change 𝑓(𝑤) to be 𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛) that indicates the

 Page 11 of 19

maximum value obtained from completely filling the knapsack of weight capacity 𝑤 and 𝑥𝑖

number of item 𝑖s are used.

3.5. Method 3

3.5.1. Methodology

Let 𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛) be the maximum value obtained from completely filling the knapsack of

weight capacity 𝑤 and 𝑥𝑖 number of item 𝑖s are used. 𝑓(𝑤 − 𝑤1, 𝑥1 − 1, 𝑥2, … , 𝑥𝑛) means not

picking an item 1 compared with 𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛): 𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓(𝑤 − 𝑤1, 𝑥1 −

1, 𝑥2, … , 𝑥𝑛) + 𝑣1. Repeat this process for all 𝑛 items, we get the maximum value for taking an

arbitrary item is: max
1≤𝑖≤𝑛

(𝑓(𝑤 − 𝑤𝑖 , 𝑥1, 𝑥2, … , 𝑥𝑖 − 1, … , 𝑥𝑛) + 𝑣1). Also, if no more items are

selected, the function’s value does not change. Adding the consideration of “no change”, we have:

𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛) = max (𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛), max
1≤𝑖≤𝑛

(𝑓(𝑤 − 𝑤𝑖 , 𝑥1, 𝑥2, … , 𝑥𝑖 − 1, … , 𝑥𝑛) + 𝑣1)) (1)

For every 𝑖 such that 𝑤 ≥ 𝑤𝑖 and 𝑥𝑖 + 1 ≤ 𝑚𝑖.

Or we can say:

Given 𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛), we calculate

𝑓(𝑤 + 𝑤𝑖 , 𝑥1, … , 𝑥𝑖 + 1, … , 𝑥𝑛) = max(𝑓(𝑤 + 𝑤𝑖 , 𝑥1, … , 𝑥𝑖 + 1, … , 𝑥𝑛), 𝑓(𝑤, 𝑥1, … , 𝑥𝑛) + 𝑣𝑖) ∀𝑖 ∈ [1, n](2)

For every 𝑖 such that 𝑤 + 𝑤𝑖 ≤ W and 𝑥𝑖 + 1 ≤ 𝑚𝑖 .

Equation (1) shows the theory, while equation (2) tells the action.

In mathematical words, method 3 works as follows:

1. Initialize: 𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛) = 0 ∀𝑤 ≤ 𝑊, 𝑥𝑖 ≤ 𝑚𝑖.

2. Calculate 𝑓(𝑤𝑖 , 0,0, … ,1, … ,0) = 𝑣𝑖 (the (𝑖 + 1)th variable is 1).

3. Continue using equation (2) until every 𝑓 value is known.

 Page 12 of 19

4. The answer to the original question is max(𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛)) ∀𝑥𝑖 ≤ 𝑚𝑖 , 𝑤 ≤ 𝑊. This means

the maximum value of filling the knapsack is the maximum value of all possible ways of filling it.

3.5.2. Reflection and Evaluation

The answer is not 𝑓(𝑊, 𝑥1, 𝑥2, … , 𝑥𝑛), where the first variable is 𝑊 instead of 𝑤, because using 𝑊

means the knapsack has to be filled completely. In cases like 𝑊 is odd and all items has an even

weight, the knapsack will never be filled completely, then 𝑓(𝑊, 𝑥1, 𝑥2, … , 𝑥𝑛) = 0, and the answer

is also 0.

This method can also calculate the result from only using some items and the weight capacity is not

𝑊. If the numbers of items provided changes from 𝑚𝑖 to 𝑚𝑖
′ and weight capacity changes from 𝑊

to 𝑊′, the maximum possible value is max (𝑓(𝑤, 𝑥1, 𝑥2, … , 𝑥𝑛)) ∀𝑥𝑖 ≤ 𝑚𝑖
′ and 𝑤 ≤ 𝑊′.

Note that the “max” function in equation (1) and (2) is unnecessary. Actually, from the definition of

𝑓, every 𝑓 value corresponds to a unique way of selecting the items and filling the knapsack, so its

value is determined and not subject to change. For example, 𝑓(10,2,3,4) means exactly using 2 As,

3Bs, and 4Cs to fill a knapsack of weight capacity 10. Therefore, the essential idea of this method is

still enumeration, taking roughly ∏ 𝑚𝑖
𝑛
𝑖=1 number of steps. This method’s memory cost is 𝑊 ∙

∏ 𝑚𝑖
𝑛
𝑖=1 . Despite the magnificent and impractical number of steps and memory cost, the idea of

using functions to express values obtained from schemes is worth expanding.

Incorporating all 𝑛 item numbers might be unnecessary. I decide to use 𝑓(𝑤, 𝑖), which means the

maximum value from using the first to the 𝑖th item and exactly filling a knapsack of weight capacity

𝑤.

3.6. Method 4

3.6.1. Methodology

Let 𝑓(𝑤, 𝑖) be the maximum value from using the first to the 𝑖rh item and completely filling a

knapsack of weight capacity 𝑤. We can put 0,1, 2, … to 𝑚𝑖 number of item 𝑖 in the knapsack. If 𝑥𝑖

 Page 13 of 19

number of item 𝑖 is used, then it brings 𝑣𝑖𝑥𝑖 values and costs 𝑤𝑖𝑥𝑖 units of weight. Then we get the

equation: 𝑓(𝑤, 𝑖) = 𝑓(𝑤 − 𝑤𝑖𝑥𝑖 , 𝑖 − 1) + 𝑣𝑖𝑥𝑖. Combining all 𝑚𝑖 + 1 options, we have:

𝑓(𝑤, 𝑖) = max
0≤𝑥𝑖≤𝑚𝑖

(𝑓(𝑤 − 𝑤𝑖𝑥𝑖 , 𝑖 − 1) + 𝑣𝑖𝑥𝑖) (3)

For 𝑤 ≥ 𝑤𝑖𝑥𝑖 and 𝑖 ≥ 1.

In mathematical words, method 4 works as follows:

1. Initialize: 𝑓(𝑤, 𝑖) = 0 ∀𝑤 ≤ 𝑊, 𝑥𝑖 ≤ 𝑚𝑖.

2. 𝑓(𝑤1𝑥1, 1) = 𝑣1𝑥1 ∀𝑥1 ≤ 𝑚1.

3. 𝑓(𝑤, 2) = max
0≤𝑥2≤𝑚2

(𝑓(𝑤 − 𝑤2𝑥2, 1) + 𝑣2𝑥2) ∀𝑤 ≥ 𝑤2𝑥2.

4. Using equation (3), repeat process 3 ∀𝑖 ∈ [3, 𝑛], 𝑤 ≥ 𝑤𝑖𝑥𝑖.

5. The answer to the original question is max(𝑓(𝑤, 𝑛)) ∀𝑤 ≤ 𝑊.

3.6.2. Reflection and Evaluation

I think method 4 works because the way that function values are assigned goes only in one

direction, primarily in ascending order of 𝑖 and secondarily in ascending order of 𝑤. The value of a

scheme with larger weight capacity is only determined by other schemes with less weight capacity,

and it doesn’t work in reverse.

The main reason for method 4 being much more efficient than method 3 is that it only finds the

possible results in a much smaller region that is probable to produce the answer. This primarily

works when the sum of weight of previous items already exceeds the weight capacity, no more

items are taken. For each 𝑖, there are 𝑚𝑖 + 1 choices for 𝑥𝑖, and for the 𝑛 different items there are

∑ (𝑚𝑖 + 1)𝑛
𝑖=1 steps. Besides, there are 𝑊 + 1 different 𝑤 values. The approximate number of steps

required is therefore ∑ (𝑚𝑖 + 1)𝑛
𝑖=1 (𝑊 + 1) ≈ 𝑊 ∙ ∑ 𝑚𝑖

𝑛
𝑖=1 . This is significantly less than the

number of steps in method 1 and 2.

 Page 14 of 19

Method 4 only records the greatest value from using the previous 𝑖 items and a given weight

capacity. This significantly saves the memory cost compared with method 3, as it only needs a 2-

dimensional matrix and 𝑊𝑛 units of memory.

I think about reducing the number of variables again. Reexamining my steps in method 4, I discover

that all operations in 𝑓(∗, 𝑖) only requires values in 𝑓(∗, 𝑖 − 1), where * means “anything”.

Consider the whole binary function to be a set of layers of a unary function stacking up, and 𝑓(∗, 𝑖)

is the 𝑖th layer. Layer 𝑖 only requires value from layer 𝑖 − 1, which suggests that lower layers only

pass values to the upper layers while the upper layer cannot modify values in the lower layer.

Additionally, layer 𝑖 only requires value from its adjacent layer, 𝑖 − 1, and all previous layers do

not matter in this case. Therefore, the values are assigned from the lowest layer, layer by layer to

the top layer.

To further optimize, I use a function called 𝑠𝑟𝑐 (short for source), and a function called 𝑑𝑒𝑠𝑡 (short

for destination). 𝑠𝑟𝑐 represents the function values in a lower layer (let it be 𝑖th layer) while 𝑑𝑒𝑠𝑡

represents the values in a higher layer (let it be (𝑖 + 1)th layer).

3.7. Method 5

3.7.1. Methodology

Let 𝑠𝑟𝑐(𝑤) be the maximum value from using the first to ith order of item, and completely filling a

knapsack of weight capacity 𝑤. Let 𝑑𝑒𝑠𝑡(𝑤) be the maximum value from using the first to (𝑖 + 1)th

order of item, and completely filling a knapsack of weight capacity 𝑤. Then we have:

𝑑𝑒𝑠𝑡(𝑤) = max
0≤𝑥𝑖≤𝑚𝑖

(𝑠𝑟𝑐(𝑤 − 𝑤𝑖𝑥𝑖) + 𝑣𝑖𝑥𝑖) (4)

𝑠𝑟𝑐(𝑤) = 𝑑𝑒𝑠𝑡(𝑤) ∀𝑤 ≤ 𝑊 (5)

Repeat this process ∀𝑖 ≤ 𝑛 − 1.

In mathematical words, method 5 works as follows:

 Page 15 of 19

1. Initialize: 𝑠𝑟𝑐(𝑤) = 0 ∀𝑤 ≤ 𝑊.

2. 𝑠𝑟𝑐(𝑤1𝑥1) = 𝑣1𝑥1 ∀𝑥1 ≤ 𝑚1.

3. 𝑑𝑒𝑠𝑡(𝑤) = max
0≤𝑥2≤𝑚2

(𝑠𝑟𝑐(𝑤 − 𝑤2𝑥2) + 𝑣2𝑥2) ∀𝑤 ≥ 𝑤2𝑥2.

4. 𝑠𝑟𝑐(𝑤) = 𝑑𝑒𝑠𝑡(𝑤) ∀𝑤 ≤ 𝑊.

5. Using equation (4) and (5), repeat process 3 and 4 ∀𝑖 ∈ [3, 𝑛 − 1], 𝑤 ≥ 𝑤𝑖𝑥𝑖.

6. The answer to the original question is max(𝑑𝑒𝑠𝑡(𝑤)) ∀𝑤 ≤ 𝑊.

3.7.2. Reflection and Evaluation

Method 5 uses two functions with only one independent variable throughout. It reduces memory

cost to 2𝑊 compared with method 4.

Notice that method 5 still requires trying out every 𝑥𝑖 value in every layer, so the total number of

steps does not change. It is still roughly 𝑊 ∙ ∑ 𝑚𝑖
𝑛
𝑖=1 steps.

3.8. Method 6

3.8.1. Methodology

Notice that the order of assignment explained in 3.6.2 is: primarily in ascending order of 𝑖 and

secondarily in ascending order of 𝑤. If I only use one function, say, 𝑓(𝑤) be the maximum value of

completely filling a knapsack of weight capacity 𝑤, then should require a value from 𝑓(𝑤′) where

𝑤′ is less than 𝑤 and 𝑓(𝑤′) means the value from a lower layer. Thus, the order of assignment

should be in descending order of 𝑤, to ensure that the data we require comes from a previous layer.

𝑓(𝑤) = max
0≤𝑥𝑖≤𝑚𝑖

(𝑓(𝑤 − 𝑤𝑖𝑥𝑖) + 𝑣𝑖𝑥𝑖) (6)

Repeat this process for all 𝑖 ≤ 𝑛, and calculate 𝑓(𝑤) values in descending order of 𝑤.

 In mathematical words, method 5 works as follows:

 Page 16 of 19

1. Initialize: 𝑓(𝑤) = 0 ∀𝑤 ≤ 𝑊.

2. 𝑓(𝑤1𝑥1) = 𝑣1𝑥1 ∀𝑥1 ≤ 𝑚1.

3. Calculate 𝑓(𝑤) = max
0≤𝑥2≤𝑚2

(𝑓(𝑤 − 𝑤2𝑥2) + 𝑣2𝑥2) ∀𝑤 ∈ [𝑤2𝑥2, 𝑊] in ascending order of 𝑤.

4. Using equation (6), repeat process 3 ∀𝑖 ∈ [3, 𝑛], 𝑤 ≥ 𝑤𝑖𝑥𝑖.

5. The answer to the original question is max(𝑓(𝑤)) ∀𝑤 ≤ 𝑊.

3.8.2. Reflection and Evaluation

This method is currently the most efficient one because it takes the least steps and the lowest

memory cost. Compared with method 5, it only requires one function throughout, and the memory

cost is 𝑊.

However, the number of steps for this method is still approximately 𝑊 ∙ ∑ 𝑚𝑖
𝑛
𝑖=1 .

4. Further Explanation

4.1. General Evaluation

I have developed seven methods in this essay.

1. Method 0 uses an idea similar to “greedy algorithm” (Greedy algorithm - Wikipedia, 2021). It is

problematic as it only focuses on “the best” locally and ignores the true best result as shown in

example 2.

2. Method 1 uses enumeration. Number of steps: ∏ 𝑚𝑖
𝑛
𝑖=1 .

3. Method 2 is a minor improvement on method 1 by reducing the enumeration region to

[0, lcm
1≤𝑖≤𝑛

(𝑤𝑖)]. Number of steps: ∏ min (𝑚𝑖 , ⌊
𝑃

𝑤𝑖
⌋)𝑛

𝑖=1 .

4. Method 3 uses a function to express the value of a scheme, but its essence is still enumeration.

Number of steps: ∏ 𝑚𝑖
𝑛
𝑖=1 ; memory cost: 𝑊 ∙ ∏ 𝑚𝑖

𝑛
𝑖=1 .

 Page 17 of 19

5. Method 4 improves on method 3 by reducing the number of variables of the function to 2 and

significantly reduce the number of steps and memory cost. Number of steps: 𝑊 ∙ ∑ 𝑚𝑖
𝑛
𝑖=1 ; memory

cost: 𝑊𝑛.

6. Method 5 improves the memory cost by using two unary functions, 𝑠𝑟𝑐 and 𝑑𝑒𝑠𝑡. It has same

number of steps as method 4. Memory cost: 2𝑊.

7. Method 6 further improves the memory cost by using only one unary function. It has same

number of steps as method 4. Memory cost: 𝑊.

The efficiency of methods is better for newer methods than previous methods.

4.2. Extension: Multi-dimensional Weight Requirement

When there is more than one weight requirement (here the concept of “weight” means a type of

requirement, and in real life it could be weight, length, price, etc.), the function adds other

dimensions, and takes the similar steps in method 6.

4.2.1. Definition

A knapsack has 𝑘 different types of weight capacities, being 𝑊1, 𝑊2, … , 𝑊𝑘 units respectively.

Given 𝑛 items, numbered from 1 up to 𝑛. A 𝑘 × 𝑛 matrix 𝑤𝑘,𝑛 means, 𝑤𝑗,𝑖 represents the weight of

item 𝑖 under criterion 𝑗. Item 𝑖 has a value of 𝑣𝑖 and a maximum amount of 𝑚𝑖, and 𝑥𝑖 number of

item 𝑖 is included in the knapsack.

Maximize ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1

Subject to ∑ 𝑤𝑗,𝑖𝑥𝑖
𝑛
𝑖=1 ≤ 𝑊𝑘 and 𝑥𝑖 ≤ 𝑚𝑖 ∀𝑖 ∈ [1, n], 𝑗 ≤ 𝑘.

4.2.2. Solution

Let 𝑓(𝑤1
′ , 𝑤2

′ , … , 𝑤𝑘
′) be the maximum value of completely filling a knapsack of weight capacity

{𝑤1
′ , 𝑤2

′ , … , 𝑤𝑘
′ } in all 𝑘 requirements, then we have:

𝑓(𝑤1
′ , 𝑤2

′ , … , 𝑤𝑘
′) = max

0≤𝑥𝑖≤𝑚𝑖

(𝑓(𝑤1
′ − 𝑤𝑖,1𝑥𝑖 , 𝑤2

′ − 𝑤𝑖,2𝑥𝑖 , … , 𝑤𝑛
′ − 𝑤𝑖,𝑛𝑥𝑖) + 𝑣𝑖𝑥𝑖)

 Page 18 of 19

Repeat this process for all 𝑖 ≤ 𝑛. The steps are similar in method 6, and the answer to the question

is max(𝑓(𝑤1
′ , 𝑤2

′ , … , 𝑤𝑘
′)) ∀𝑤𝑖

′ ≤ 𝑊𝑖.

5. Conclusion

This essay mainly discusses the knapsack problem. First, I have explained the definition of

knapsack problem and narrowed the topic to the “bounded knapsack problem.” Then, I have given

two examples and seven methods, gradually optimizing each one. Method 6 requires low memory

cost and few total steps. I also extend the topic to cases with multi-dimensional weight requirement.

The knapsack problem has real life implications. For example, in allocating our time for a vacation,

there are various necessary tasks to accomplish and fun things to do, but all of them have a cost in

time, effort, and material. Within the limited time and budget for the vacation (similar to weight

capacity of the knapsack), we need to efficiently allocate the resources to yield the best possible

outcome.

Still, the number of steps for method 6, 𝑊 ∙ ∑ 𝑚𝑖
𝑛
𝑖=1 , might still be further reduced. I would prefer

to investigate further in those extended questions in the future when I have a more profound

understanding of those fascinating math topics.

6. Bibliography

1. Cui, T., 2021. pack/V2.pdf at master · tianyicui/pack. [online] GitHub. Available at:

<https://github.com/tianyicui/pack/blob/master/V2.pdf> [Accessed 14 June 2021].

2.En.wikipedia.org. 2021. Knapsack problem - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Knapsack_problem> [Accessed 14 June 2021].

3. En.wikipedia.org. 2021. Mathematical induction - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Mathematical_induction> [Accessed 14 June 2021].

4. En.wikipedia.org. 2021. Greedy algorithm - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Greedy_algorithm> [Accessed 18 October 2021].

 Page 19 of 19

5. En.wikipedia.org. 2021. Least common multiple - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Least_common_multiple> [Accessed 18 October 2021].

	1. Introduction
	2. State Research Question
	2.1. Definition
	2.2. Different Cases of the Knapsack Problem
	2.3 Definition of Key Terms

	3. Examples and Methods
	3.1. Example 1
	3.1.1. Solution
	3.1.2. Method 0

	3.2. Example 2
	3.2.1. Solution Using Method 0
	3.2.2. Reflection and Evaluation

	3.3. Method 1
	3.3.1. Methodology
	3.3.2. Reflection and Evaluation

	3.4. Method 2
	3.4.1. Methodology
	3.4.2. Reflection and Evaluation

	3.5. Method 3
	3.5.1. Methodology
	3.5.2. Reflection and Evaluation

	3.6. Method 4
	3.6.1. Methodology
	3.6.2. Reflection and Evaluation

	3.7. Method 5
	3.7.1. Methodology
	3.7.2. Reflection and Evaluation

	3.8. Method 6
	3.8.1. Methodology
	3.8.2. Reflection and Evaluation

	4. Further Explanation
	4.1. General Evaluation
	4.2. Extension: Multi-dimensional Weight Requirement
	4.2.1. Definition
	4.2.2. Solution

	5. Conclusion
	6. Bibliography

