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Introduction 

Throughout my experience of learning mathematics, I read various additional materials 

beyond the textbook. Once I was amazed by a concept called generalized distance. It 

introduces new ideas of distances that have real-world implications, even involving 

chess and city traveling. Therefore, I’m urged to explore some properties and 

applications of the generalized distance between two points.  

Definition of key terms 

The following definitions all exist only in Euclidean geometry. Non-Euclidean 

geometry is too complicated and definitely beyond the scope of this IA, so I won’t 

discuss that. 

𝐷 refers to the distance between two points specified by each problem. 

Points 𝐴(𝑥!, 𝑦!), 𝐵(𝑥", 𝑦") are in a two-dimensional plane.  

∆𝑥 = 𝑥! − 𝑥" refers to the difference of 𝑥-coordinates between 𝐴 and 𝐵. 

∆𝑦 = 𝑦! − 𝑦" refers to the difference of 𝑦-coordinates between 𝐴 and 𝐵. 

Define the “Minkowski distance of order 𝑚 (𝑚-norm distance)” (Distance - 

Wikipedia, 2021) between 𝐴 and 𝐵 as “𝐿#” (Lm distance, 2021).   

𝐿# = (|𝑥! − 𝑥"|# + |𝑦! − 𝑦"|#)
!
" 

This definition of 𝐿# is actually my own. The notation in NIST is “the generalized 

distance between two points in a plane with point 𝑃! at (𝑥!, 𝑦!) and 𝑃" at (𝑥", 𝑦"), 

is (|𝑥! − 𝑥"|# + |𝑦! − 𝑦"|#)
!
"” (Lm distance, 2021), which lacks the explanation for 
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𝑚-norm. On the other hand, although the definition of Wikipedia gives “the Minkowski 

distance of order 𝑝 (𝑝-norm distance)” (Distance - Wikipedia, 2021), I believe having 

a coherent term, 𝐿#, is better. Therefore, I combine the definition in Wikipedia and 

NIST and optimize them to get a better definition. 

Specifically, 

When 𝑚 = 2 , 𝐿" = 3(𝑥! − 𝑥")" + (𝑦! − 𝑦")" . This represents the “Euclidian 

distance” (Distance - Wikipedia, 2021). 

When 𝑚 = 1, 𝐿! = |𝑥! − 𝑥"| + |𝑦! − 𝑦"|. This represents the “Manhattan distance” 

(Distance - Wikipedia, 2021). 

When 𝑚 = ∞, 𝐿$ = lim
#→$

(|𝑥! − 𝑥"|# + |𝑦! − 𝑦"|#)
!
" = max	(|𝑥! − 𝑥"|, |𝑦! − 𝑦"|). 

This represents the “Chebyshev distance” (Distance - Wikipedia, 2021). 

More generally, let points 𝐴(𝑎!, 𝑎", … , 𝑎&)  and 𝐵(𝑏!, 𝑏", … , 𝑏&)  be in a 𝑛 -

dimensional space.  

𝐿# = >?|𝑎' − 𝑏'|#
&

'(!

@

!
#

 

Here 𝑚 is not required to be an integer but should be not less than 1. Otherwise, the 

triangular inequality doesn’t hold. I will prove this below by contradiction. 

Assume 𝑚 < 1, and there are three points, 𝐴(0,0), 𝐵(0,1),	and 𝐶(1,1). They form a 

triangle ∆𝐴𝐵𝐶. Then the three sides must satisfy the triangular inequality, which is 

𝐴𝐵 + 𝐵𝐶 > 𝐴𝐶. In terms of 𝐿# distance, 𝐴𝐵 = 𝐵𝐶 = (0# + 1#)
!
" = 1 and 𝐴𝐶 =
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(1# + 1#)
!
" = (2 ∙ 1#)

!
" = 2

!
" > 2! = 2 . Since 𝐴𝐵 + 𝐵𝐶 < 𝐴𝐶 , the triangular 

inequality does not hold, contradicting the assumption of 𝑚 < 1. Hence, 𝑚 ≥ 1. 

Next, I will propose several problems to help explain the applications of generalized 

distance. 

Several Problems to Consider 

Problem 1 

A mouse on point 𝐴(9,14) tries to eat a piece of cheese on point 𝐵(16,8). The mouse 

can go directly towards the cheese. Find the shortest distance that the mice need to 

travel in order to eat the cheese.  

 

Figure 1. Problem 1 Illustration 
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Solution 

𝐷 = 3(9 − 16)" + (14 − 8)" = 9.22.  

Note that the procedure of distance calculation is the same with 𝐿" distance, which is 

the Euclidian distance. The definition of Euclidian distance is used most widely in our 

world.  

Problem 2 

A mouse on point 𝐴(9,14) tries to eat a piece of cheese on point 𝐵(16,8). The mouse 

can only travel through the gridlines. Find the shortest distance that the mouse needs to 

travel in order to eat the cheese. 

  

Figure 2. Problem 2 Illustration 

Solution 
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The mice can only travel along the edge and surface of the rectangle. In this case the 

smallest distance it needs to travel is 𝐷 =	 |16	 − 	9| + |8 − 14| = 13. 

Note that the format of this distance is similar to 𝐿!. This distance is also called the 

Manhattan distance or “taxicab-norm” distance because “it is the distance a car would 

drive in a city laid out in square blocks if there are no one-way streets” (Distance - 

Wikipedia, 2021). It can also measure “the distance between squares on the 

chessboard for rooks” (Euclidean vs Manhattan vs Chebyshev Distance, 2021). 

Problem 3 

Suppose the plane is now a chessboard. A king lies on point 𝐴(9,14)	and a static enemy 

lies on 𝐵(16,8). The king can travel one unit to any eight directions (up, down, left, 

right, up-left, up-right, down-left or down-right) to the position next to it. Find the least 

number of steps that the king needs to move to reach the enemy. 

 

Figure 3. Problem 3 Illustration 

Solution 
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Figure 4. Problem 3 Solution 

The king can first go 6 units down-right through the yellow line to 𝐶(15,8), then go 

one unit right to reach 𝐵(16,8) and reaches the enemy. The total steps required is 6 +

1 = 7. 

What if the coordinates for the king and the enemy are different, say, 𝐴(𝑥!, 𝑦!) and 

𝐵(𝑥", 𝑦")? Also, I generalize the king movement rule to be: one time it can move 𝑛 

units to displace one of (𝑛, 0), (−𝑛, 0), (0, 𝑛), (0, −𝑛), (𝑛, 𝑛), (𝑛, −𝑛), (−𝑛, 𝑛)  and 

(−𝑛,−𝑛) units where 𝑛 is a real positive number.  

For the king to reach the enemy, the king’s and the enemy’s final 𝑥 coordinates and 𝑦 

coordinates should be equal. Therefore, |∆𝑥|  steps are required for their 𝑥 

coordinates to equal and |∆𝑦| steps are required for their 𝑦 coordinates to equal. 

Since the king can travel diagonally, both |∆𝑥|  and |∆𝑦|	 can be shortened 

simultaneously. The king can travel diagonally until the less of |∆𝑥| and |∆𝑦| is zero, 

then travel either horizontally or vertically until it reaches the target. Therefore, the less 
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one of |∆𝑥| and |∆𝑦| have no contribution to the final steps, so the resultant steps 

required is the larger one of |∆𝑥| and |∆𝑦|. To express it in mathematical language, 

the minimum steps required is max(|∆x|, |∆y|) = max	(|𝑥! − 𝑥"|, |𝑦! − 𝑦"|). 

Note that the format of this distance is similar to 𝐿$ or the Chebyshev distance. 

Particularly in two-dimension, it is “the minimum number of moves kings require to 

travel between two squares on a chessboard” (Distance - Wikipedia, 2021).  

Conversion between Chebyshev distance and Manhattan 

distance 

After finding applications of different 𝐿# distances in real life, I notice that 𝐿! and 

𝐿$  are similar in notation. 𝐿! = |𝑥! − 𝑥"| + |𝑦! − 𝑦"|  and 𝐿$ = max(|𝑥! −

𝑥"|, |𝑦! − 𝑦"|). I am curious to explore whether there exists some common pattern 

between 𝐿! and 𝐿$. 

 

Figure 5. Manhattan and Chebyshev distance relationship in two-dimension 
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We define the Manhattan system as the coordinate system that all the points in this 

system have their distance to the origin calculated as the Manhattan distance, and the 

Chebyshev system as the coordinate system that all the points in this system have their 

distance to the origin calculated as the Chebyshev distance. On Figure 5, the blue 

square is a “unit square” in the Manhattan system which indicates all the points that 

have one-unit Manhattan distance to the origin. The red square is a “unit square” in the 

Chebyshev system which indicates all the points that have one-unit Chebyshev distance 

to the origin. Therefore, we can use the blue square to represent the Manhattan system 

and the red square to represent the Chebyshev system, because other points in one 

system lies on the extended square from the unit square of that system. Consequently, 

analyzing the relationship between the two systems is congruent to analyzing the 

relationship between the two unit squares. 

We define one Manhattan system and one Chebyshev system as “convertible” as: for 

an arbitrary point (𝑥) , 𝑦)) in the Manhattan system, there is always a corresponding 

point (𝑥* , 𝑦*)  in the Chebyshev system so that the Manhattan distance between 

(𝑥) , 𝑦)) and the origin equals the Chebyshev distance between (𝑥* , 𝑦*) and the 

origin, vice versa. 

Method 1: Geometric Approach 

Since the two unit squares are “similar” (they have the same shape) (Similarity 

(geometry) - Wikipedia, 2021) with both centers at the origin, we can rotate the blue 

square 45° counterclockwise and enlarge it by scale factor √2 to obtain the red 
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square. Reversely, by rotating the red square 45° counterclockwise and contract it by 

scale factor √2, we obtain the blue square. So the “rotating and scaling” approach 

can convert between the Manhattan distance and the Chebyshev distance.  

Method 2: Algebraic approach 

The concept of shifting coordinate system can also be explained using vector and matrix. 

I define the dot product between a two-dimensional vector R𝑎𝑏S and a one-dimensional 

vector [𝑛] as R𝑎𝑛𝑏𝑛S, and the resultant vector has the geometric meaning of having 𝑎𝑛 

units on the 𝑥-coordinate and 𝑏𝑛 units on the 𝑦-coordinate. 

I define a two-by-two transformation matrix R𝑎 𝑐
𝑏 𝑑S be a combined transformation, 

combining the transformation of R𝑎𝑏S  on the 𝑥 -coordiante and R𝑐𝑑S  on the 𝑦 -

coordinate of the vector R
𝑥
𝑦S. Because the 𝑥- and 𝑦- coordinate of the vector can be 

considered as one-dimensional vectors, the transformation of R𝑎𝑏S on [𝑥] is R𝑎𝑥𝑏𝑥S and 

the transformation R𝑐𝑑S on [𝑦] is R
𝑐𝑦
𝑑𝑦S. So the resultant vector is X

𝑎𝑥 + 𝑐𝑦
𝑏𝑥 + 𝑑𝑦Y. 

If we consider a point’s coordinate being a vector, and a transformation of coordinate 

system as a matrix, then by solving the matrix for transformation we can obtain the 

corresponding point in the other coordinate system. 

In two-dimension, let 𝐴(𝑥!, 𝑦!) and 𝐵(𝑥", 𝑦"), then their Manhattan distance is  

 

Which is “the Chebyshev distance between (𝑥! + 𝑦!, 𝑥! − 𝑦!) and (𝑥" + 𝑦", 𝑥" −
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𝑦")” (Juli - OI Wiki, 2021). Therefore, the Manhattan distance of the point (𝑥, 𝑦) to 

the origin in the first system equals the Chebyshev distance of (𝑥 + 𝑦, 𝑥 − 𝑦) to the 

origin in the second system. Because R
𝑥
𝑦S ∙ R

1 1
1 −1S = R

𝑥 + 𝑦
𝑥 − 𝑦S , applying a 

transformation of R1 1
1 −1S converts the point (𝑥, 𝑦) in the Manhattan system to the 

point (𝑥 + 𝑦, 𝑥 − 𝑦) in the Chebyshev system.  

Also, the Chebyshev distance between 𝐴(𝑥!, 𝑦!) and 𝐵(𝑥", 𝑦") is 

	

Which is “the Manhattan distance between Z+!,-!
"

, +!.-!
"
[ and Z+#,-#

"
, +#.-#

"
[” (Juli - 

OI Wiki, 2021). Therefore, the Chebyshev distance of the point (𝑥, 𝑦) to the origin in 

the first system equals the Manhattan distance of the point Z+,-
"
, +.-
"
[ to the origin in 

the second system. Because R
𝑥
𝑦S ∙ \

!
"

!
"

!
"

− !
"

] = ^
+,-
"

+.-
"

_ , applying a transformation of 

\
!
"

!
"

!
"

− !
"

] converts the point (𝑥, 𝑦) in the Chebyshev system to point Z+,-
"
, +.-
"
[ in 

the Manhattan system. 

Notice that the first transformation matrix, R1 1
1 −1S, is the second transformation 

matrix, \
!
"

!
"

!
"

− !
"

] , times two. This is consistent with the scale factor ratio in the 

geometric approach. In the first case, the blue unit square expands with scale factor √2 

while in the second case, the red unit square contracts with scale factor √2. The 
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combined effect is an expansion with scale factor √"!
√#

= 2. This provides an effective 

proof to my deduction of the transformation matrix. 

 

Figure 6. Manhattan and Chebyshev distance relationship in n-dimension 

What about higher dimensions? I try on this but do not find much result. Similar to the 

two-dimension process, in Figure 6 above, the inner orange octahedron represents all 

the points that have one-unit Manhattan distance from the origin, while the red cube 

represents all the points that have one-unit Chebyshev distance from the origin. 

However, octahedron and cube are clearly not similar, so my “rotating and scaling” 

approach does not work anymore. I really wonder what their relationship is in a higher 

dimension and I am eager to find better methods for further discovery. 

Conclusion 

For the generalized 𝐿# distance in Euclidean geometry, it has specific applications 

in real life when some certain 𝑚 values are assigned. When 𝑚 = 1, it is the 
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Manhattan distance that calculates the length that a car needs to travel through a city 

with grid routines. When 𝑚 = 2, it is the Euclidean distance that calculates the 

straight-line distance between two points. When 𝑚 = ∞, it is the Chebyshev distance 

that calculates the minimum steps required for a king in chess to reach its enemy. 

Surprisingly, the Chebyshev distance and the Manhattan distance in two dimensions 

can be converted between each other, which I have shown on page 8. The geometric 

approach provides a more intuitive way of understanding the conversion using unit 

squares, while the algebraic approach uses transformation matrixes that can deal with 

data of actual point coordinates. Both methods have advantages when solving 

different kind of problems. 

Certainly, there are limitations with my essay. I did not investigate further 𝐿# 

distances when 𝑚 takes values other than 1, 2, and ∞ because other results are 

related with “super ellipse” (Distance - Wikipedia, 2021), definitely beyond the scope 

of IB Higher Level math. Additionally, my discovery of the conversion of the 

Chebyshev distance and the Manhattan distance is limited to two-dimension. I would 

prefer to investigate further in those extended questions in the future when I have a 

more profound understanding of those fascinating math topics.  
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