
CRITERION B: DESIGN

Object Design

This program will have several user interfaces. When starting the program, the program displays

a message to tell the user to login to the system. By clicking the “Login” menu above, the user

can choose to create a new account, login to the system, or delete an existing account.

Each choice under “Login” menu would have a corresponding frame popping out.

After the client login to the system, the program displays the greeting message. The client can

then select “Options” menu. Three choices under this menu would correspond to three different

frame pops out. Choices “Start assigning seats” and “Check new features” are not implemented

yet. Clicking “Start assigning seats” would currently display the seating table in the terminal.

Clicking “Check new features” would simply tell the client that the only seating feature is the

random seat assignment.

After the client input data for the new layout, the program displays the map, and the client can

choose whether to conform and save the layout or to cancel and create the layout again.

Processing Flowchart

Below flowcharts outline the overall logic of the program.

Class Diagram

I will code the program using object-oriented programming, consist of 8 classes and each

implements the use of encapsulation and polymorphism. This UML diagram shows the class

components (instance variables and methods) and relationships between classes.

Pseudocode

I use pseudocode to help illustrate the functions of the main methods used in this program.

Create a new account:

 loop while true

 myUsername = input from username textField

 myPassword = input from password textField

 boolean ok = true

 loop for each acc in accounts

 if acc's username equals myUsername then

 output "Account already exist! Create your account again."

 ok = false

 break

 end if

 end loop

 if ok = false then

 clear username textField

 clear password textField

 continue

 end if

 output "Account successsfully created!"

 Account myAcc = new Account(myUsername, myPassword)

 add myAcc in AccountManager

 add myAcc to Accounts.csv

 add new directory Accounts/<myUsername>

 end loop

Login:

 if acounts is empty then

 throw Exception "No registered users!"

 end if

 loop while true

 myUsername = input from username textField

 myPassword = input from password textField

 boolean ok = true

 loop for each acc in accounts

 if acc's username equals myUsername and acc's password equals myPassword

then

 output "Login successful!"

 currentAccount = acc

 return acc

 end if

 end loop

 output "Username and password don't match. Input again."

 clear username textField

 clear password textField

 end loop

Delete an account:

 Display all accounts stored

 loop while true

 myUsername = input from username textField

 myPassword = input from password textField

 boolean ok = false

 loop for each acc in accounts

 if acc's username equals myUsername and acc's password equals myPassword

then

 output "Account "+myUsername+" is canceled"

 remove the account from accounts

 update Accounts.csv

 delete Accounts/<myUsername> directory

 ok = true

 end if

 end loop

 if ok = true then

 break

 else

 output "Username and password don't match. Input again."

 end if

 end loop

Create a new layout:

 _name = input from name textField

 row = input from row textField

 col = input from column textField

 cancelNum = input from number of blocks to cancel textField

 loop for i from 1 to cancelNum

 _x = input from x textField

 _y = input from y textField

 add new Pair(_x,_y) to _posCanceled

 end loop

 Layout myLayout = new Layout(_name,row,col,cancelNum,_posCanceled)

 Display the current map. Ask if the client likes the layout

 opt = input from option textField

 if opt = 1 then

 Store the layout configuration in Accounts/<username>/<_name>.txt

 output "Your layout named "+<_name>.txt+" is successfully saved."

 else

 Restart this function

 end if

RandomSeating:

 username = current account's username

 Read the namelist from Accounts/+<username>+/namelist.csv. If the file is not found,

throws FileNotFoundException

 Add all names in namelist to students

 Add all names of layouts under the client's account in theNames

 Display theNames

 boolean ok = false

 loop while ok = false

 yourChoice = input from choice textField

 loop for each aName in theNames

 if yourChoice equals aName then

 ok = true

 break

 end loop

 output "This name not found! Input again!"

 Clear choice entry

 end loop

 Create layout from the choice

 Load map and numberOfStudents from layout

 if students's size not equals numberOfStudents then

 throw new Exception("Number of student does not match!")

 else

 mapNames = new String[layout's ROWS + 1][layout's COLUMNS + 1]

 ok = false

 filled = 0

 ArrayList<String> seats = new ArrayList<String>();

 HashMap<String,Pair> pos = new HashMap<String,Pair>();

 HashMap<String,Integer> book = new HashMap<String,Integer>();

 filled = 0

 clear book

 clear seats

 clear pos

 loop while filled < numberOfStudents

 randm = a random number in range [0,numberOfStudents - 1]

 if the randm'th student's name in book = null then

 add the randm'th student's name in book

 add the randm'th student's name in seats

 filled = filled + 1

 end if

 end loop

 Display the current map with student names

 Export the map to seating.csv

 end if

Test Plan

These tests are necessary to prove that my program fulfills all the success criteria.

Action to test Method of testing Expected result

The client can set up the

configuration of a new

seating plan, including row

and column number and the

empty positions.

Click “Options”, then click

“Create a new layout”, then

enter the name, row number,

column number, and

positions to cancel.

A map with user-entered data

is displayed on the GUI. The

user can then choose whether

to accept or decline the

layout.

The client can select different

seating scheme, such as

random assignment, or

moving by independent

rows/columns.

Click “Options”, then click

“Start assigning seats”.

Multiple seating scheme is

provided on the frame popped

out.

The user can select which

seating scheme to adopt.

The client can choose the

type of layout used in the

seating plan.

Click “Options”, then click

“Start assigning seats” and

select a scheme.

All layouts the client created

previously will be displayed

as options in the GUI.

The program can export the

plan to a .csv file.

Click “Options”, then click

“Start assigning seats” and

select a scheme. Select a

layout to be used.

A new file seating.csv is

generated under

Accounts/<username>/

directory.

The client can adjust the

seating plan manually by

directly editing the

produced .csv file.

Go to Accounts/<username>/

directory, and open

seating.csv.

The client can edit the

contents in seating.csv. The

client can also save changes.

The program can display the

seating plan on a GUI.

Click “Options”, then click

“Start assigning seats” and

select a scheme. Select a

layout to be used.

A frame will pop out,

displaying the seating plan

with student names and their

positions.

(424 words)

