
CRITERION C: DEVELOPMENT

UML Diagram

I will code the program using object-oriented programming, consist of 8 classes and each

implements the use of encapsulation and polymorphism. This UML diagram shows the class

components (instance variables and methods) and relationships between classes.

List of Techniques

The techniques used in the program include:

• Arrays

• Try & catch exception handling

• File handling

• Graphical user interface

• Complex selection with nested if or multiple conditions

• Global and local variables

• Sequential search algorithm

• Encapsulation, using get and set methods

Arrays

A lot of arrays are used throughout my code. Array is a very efficient type of data type that stores

a row of data with the same identifier name and type. For example, in Scheme class, I use the

two-dimensional array map and mapNames to store the seating plan. I use the two-dimensional

array because usually the desks in a classroom are positioned in a rectangular shape that has two

attributes: row and column. The first index corresponds to the row number, valid in range

[1,ROWS], and the second index corresponds to the column number, valid in range

[1,COLUMNS], in which ROWS is the row number and COLUMNS is the column number of

the layout. If either index is 0, then the program would have logic error because that variable is

meaningless. If either index is greater than ROWS (or COLUMNS), then an

ArrayOutOfBoundException will be thrown, causing the program to crash. It is much more

efficient to manage the whole seating plan using the two arrays because the state of each position

can be visited using the row and column number.

Try & Catch Exception Handling

To prevent crash of the program, exception is thrown when there is an invalid process. The

program will crash to indicate possible causes for the exception. This helps me debug and

improve the program in the future.

In RandomSeating method in Scheme class, the program catches FileNotFoundException when

namelist.csv does not exist. Message is outputted to the screen to inform the client that he or she

hasn’t created the namelist yet.

Also, when the program output to a file, try-catch clause is used in case there is an IOException.

Exception message will be recorded in a log. This works the same for the initi method in Layout

class, and initAccount method in AccountManager class.

In main method in SeatingAssignment class, FileNotFoundException and Exception are used

because the methods that this method calls may throw those exceptions.

File Handling

I choose to use file input and output due to several advantages. First, reading from and writing to

files in local devices is fast and convenient. It does not require the internet connection, and the

client can directly edit them. Second, file input and output functions work for all platforms as the

files used in my program (.txt and .csv) are well-supported across platforms. Third, my program

shows the separation of front-end and back-end, because the program deals with computation of

data separate from the input-and-output process.

In initAccount method in AccountManager class, the program first reads all accounts stored in

Accounts.csv. Then, the client input username and password. If the client selects “create a new

account”, then the program writes the new account in Accounts.csv, and creates a directory with

path Accounts/<username>/. If the client selects “delete an account”, then the program finds the

account and delete it from Accounts.csv, and the account’s directory is deleted from the

computer.

Create a new account:

Delete an account:

Graphical User Interface

The program uses Graphical User Interface (GUI) because it is much more approachable and

elegant compared with command-line user interface. The client can click buttons and access

different menus when using the product.

When first seeing the product, the user must click “Login” menu to login or register.

If the client chooses “create a new account”, then username and password for the account is

required. If the client clicks “Create” button, the program checks if the inputted username

matches with any account in Accounts.csv. If no, then a message saying “Account successfully

created” will pop up.

When the user selects “create a new account”, createNewAccountMenuItemActionPerformed

method in GUI class is called. The method will set createNewAccountFrame as visible, then load

all accounts stored in Accounts.csv. The client may input data in createNewAccountFrame.

The user can also select “Login” or “Delete an account”. The first option has almost the same

functionality as the “create new account” option, while the second option would display the

accounts stored.

After the client login to the system, a new layout can be created.

createNewLayoutMenuItemActionPerformed method in GUI class will be called, and

createNewLayoutFrame is set visible and the client can input data for the new layout.

After the client input data for the new layout, the program displays the map, and the client can

choose whether to conform and save the layout or to cancel and create the layout again. If the

client selects “save”, then a .txt file with the name assigned by the user will be created with those

input.

Complex Selection with Nested If or Multiple Conditions

Selections in my program could be nested if there are options under an option. For example, in

initAccount method in AccountManager class, the first if statement checks if the user want to

login to the system. Then, another if statement in a while loop is used to check if the username is

present in the database.

When the client selects to login to the system, an if statement with multiple conditions is used.

This checks that the user inputted username and password both match with data in the database.

Global and Local Variables

Global variables are accessible by all classes and methods. An example would be the

currentAccount variable in AccountManager class. After login to the system, future seating

assignment process need to know which account the client is using, so future classes need to

access the currentAccount variable.

In “creating a new account” section under initAccount method in AccountManager class, the

client creates a new local Account variable called myAcc using inputted username and password.

Having this local variable is because it will be returned to the main method in

SeatingAssignment class. myAcc won’t be used in other classes or methods, and the only object

used is a copy of myAcc, or the global variable currentAccount. Therefore, myAcc can be

abandoned once the return statement is executed, so it is declared as a local variable.

The use of global and local variables allowed me to isolate the global variables that were needed

at more than one time in calculations and methods in multiple classes.

Sequential Search Algorithm

My program may search if one object exists in a collection of objects. Sequential search

algorithm used here is to search every object in the collection in a certain order and check if the

external object equals with the object in the collection. An example would be the “create a new

account” part in AccountManager class. I use for-each loop to enumerate acc in accounts, the

latter one being the ArrayList of type Account. Then check if acc’s username equals the

username inputted by the client using getUsername method and equals method provided by

String class.

Encapsulation, Using Get and Set Methods

The idea of encapsulation is to use public get and set methods to access or modify private

variables so that changes can be made outside the class but at the same time access is restricted

and clearly defined by those public methods. Encapsulation promotes maintenance because code

changes can be made independently without affecting other classes. Encapsulation is

implemented throughout multiple classes in my program.

For example, in Account class:

In Layout class:

In Pair class:

These methods allow clients to retrieve and modify attributes of an object from any outside

classes despite the fact that all instance variables in the Item class is set private. It shows the idea

of abstract thinking in OOP.

(1319 words)

